科学家在高功率激光的基础上发现高密度、超高温冰的新阶段
目前可知,太阳系的外行星天王星和海王星是富含水的气态巨行星。这些行星上的极端压力比地球大气层大200万倍。它们的内部也和太阳表面一样热。在这些条件下,水呈现出奇异的高密度冰相。接下来一起来看看高功率激光帮助科学家发现高密度、超高温冰的新阶段有哪些。
新阶段一:
研究人员最近观察到其中一个名为Ice XIX的阶段,首次使用高功率激光重现必要的极端条件。海王星模型显示了新发现的体心立方超离子冰XIX可能存在的深度。它可以解释海王星的多极磁场(紫色),这是由于电导率增加和相对于旋转轴(绿色)的倾斜所致。
新阶段二:
研究人员使用直线加速器相干光源(一种突破性的X射线激光设备)的极端物质条件仪器测量了Ice XIX结构。他们发现氧原子呈体心立方结构排列,而氢原子则像流体一样自由移动,大大提高了电导率。他们的论文发表在《科学报告》上。
新阶段三:
航海者二号是美国宇航局于1977年发射的太阳系探索航天器,它测量了天王星和海王星周围极其不寻常的磁场。科学家认为,所谓的超离子冰的奇异状态是一种可能的解释,因为这些状态增加了电导率。这项工作证明了先前未被发现的 Ice XIX的存在。它表明该相可以在正确的深度形成,并有助于解释 Voyager 2磁数据。
结论:
水是太阳系中普遍存在的一种化合物,对生命至关重要。它展示了极其复杂的压力-温度相图,其中已识别出 18 个结晶冰相。没有什么地方比天王星和海王星等气态巨行星的内部更重要的稠密冰相了。科学家推测,这些行星的复杂磁场是由具有超离子特性的水冰的奇怪高压状态产生的。然而,在这些极端条件下,冰的结构很难测量。
研究人员利用直线加速器相干光源的极端条件仪器、超快 X 射线自由电子激光器和能源部 (DOE) 科学用户设施办公室,在激光驱动的动态压缩过程中发现了冰结构的新相,这是第一个直接证据。
在200GPa(200万个大气压)和5000K(8500°F)下,这种新的高压冰相(称为 Ice XIX)具有体心立方 (BCC) 晶格结构。虽然其他结构在这些条件下理论上是稳定的,但Ice XIX的BCC结构将比之前想象的更深入地增加冰巨星内部的电导率。
这些结果为航行者2号航天器在天王星和海王星上测量的多极磁场提供了重要且令人信服的起源。
延伸阅读:
高功率激光在各种领域中发挥着重要作用,它可以被用于多种应用,从材料加工到科学研究。下面是一些高功率激光助力的应用:
1.材料加工:高功率激光可以用于切割、焊接、打孔、刻蚀和3D打印等材料加工应用。这些应用可以在制造业中提高生产效率和质量。
2.医疗领域:激光手术系统可以进行高精度切割和凝固组织,用于眼科手术、皮肤手术和肿瘤切除等。
3.通信:高功率激光用于光纤通信系统,提供高速数据传输和长距离通信能力。
4.科学研究:高功率激光在物理学、化学、生物学和地球科学等领域的实验中发挥关键作用,用于制备超短脉冲、高能粒子加速和核聚变等。
5.国防和军事应用:高功率激光用于激光武器、导航系统、通信和无人机防御等军事应用。
6.环境监测:激光雷达和激光扫描系统可用于大气污染监测、地形测绘和森林激光扫描等环境应用。
7.核融合:高功率激光可用于实验性核融合研究,试图模拟太阳等离子体条件以产生清洁能源。
8.航空航天:激光测距、激光制导和激光测速等应用有助于航空航天领域的导航和通信。
需要注意的是,高功率激光应用需要谨慎处理,因为激光具有高能量和潜在的危险性。在使用高功率激光时,必须遵循安全操作规程以减少潜在的危险。
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22