LED光源模块由LED光源和散热器组成
LED光源模块由LED光源和散热器组成,实现发光和独立散热模块化设计。对于普通的LED光源,芯片产生的大部分热量通过散热器和空气的热交换而流失。
选择合适的散热结构不仅可以满足LED的散热需求,还可以降低LED模块的成本。根据散热器材料的不同,LED光源模块可分为:基于金属散热、塑料散热、玻璃散热、复合散热的四种常见的LED光源模块。
基于金属散热的LED光源模块
由于金属具有导热系数高、加工方便、强度好等优点,基于金属散热的LED光源模块是LED灯中应用较早、应用较广泛的光源模块。制作LED金属光源模块的散热器材料为铸铁、钢、铝、铜等。铝是LED金属光源模块中最常用的材料,因为它具有传热系数高、密度低、成本低等优点。然而,金属具有导电性和高密度的特点,限制了LED金属散热模块在某些地方的应用。
基于玻璃散热的LED光源模块
玻璃具有透光率高、热稳定性好、绝缘性好、美观、成本低、加工工艺成熟等优点,一直是传统灯具生产的首选材料。由于玻璃传热系数差,玻璃LED光源模块仅用于排热要求低的地方。
基于导热塑料散热的LED光源模块
导热塑料的传热系数是普通塑料的100倍,绝缘参数比金属好,制备难度比瓷器好。随着导热塑料探索的改进,其价格将会下降,许多学者认为LED导热塑料模块是LED灯的一个非常重要的领域。
LED光源模块复合散热
随着LED灯的多样化,LED光源模块也从单一材料盘发展为基于两种或两种以上材料的复合散热的LED光源模块。LED复合散热模块吸收了两种散热材料的优点,解决了各自的缺点,在散热性能、成本、绝缘、重量等方面具有相当大的优势。因此,许多学者认为复合排热LED光源模块是LED光源模块未来的发展趋势。
在机器视觉和半导体设备、3D图像和印刷、太阳能和光伏发电、生命科学和医疗产品的研发过程中,我们经常需要一些更精确的LED光源。目前市场主要是LED加上导光板的简单形状组合,在过去尚且能使用,在人工智能时代,达到光学精度水平的光源可以满足您的需求。
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22