全自动定心车床工作原理
全自动定心车床跟大多数的定心仪一样都是采用旋转镜片的方式来确定镜片的光轴和机械轴,检测镜片的偏心的同时并车削镜片的镜座。以检测和加工一体的这种方式,定心精度可以最高达到0.5μm。
图1.镜组的镜片的光轴不在一条直线上;镜片间隔也不正确
如图1所示,当镜头组的3个镜片的光轴不在一条直线且镜片间隔与理论值也相差较远时,该镜头的成像质量较差。一个优秀的成像质量较好的镜头,它的镜片的光轴应该尽量在一条直线上且镜片间隔与理论值应该相差较小。如图2所示。
图2.镜组的镜片的光轴在一条直线上;镜片间隔正确
全自动定心车床的工作原理可以用图3来大致说明。光学元件加工后,不进行定心磨边,而是直接用军用级(-40~+125℃)的玻璃-金属胶将它与机械座进行一体化胶合。把镜片的镜座放在自由度极高的样品调节机构上,此时镜片要已经放置在镜座上。这时ATS200检测镜片的光轴与ATS200本身的主轴的偏心,软件里显示出该偏心并通过样品调节机构自动调整镜座的空间位置,使其偏心最小,此时镜片的光轴与主轴基本重合。然后根据实际光学加工零件的尺寸公差和光学材料的折射率和阿贝数,让光学设计重新优化调整系统间隔和定位精度。
图3
接着进入到加工工序,根据优化结果最后对光学零件机械座进行外圆、厚度和角度的修削加工,使尺寸间隔和公差控制在µm级精度。镜片的镜座还是在旋转,并用微米级驱动高精度高硬度的车刀车削镜座外缘。先车削镜座的上表面接着车削侧面最后在车削底面。加工完毕后,仪器使用标准的偏心检测系统和非接触式光学位移传感器进行检测,偏心检测系统采用高精度的自准直仪和光学位移传感器来确保精度。然后根据实际光学加工零件的尺寸公差和光学材料的折射率和阿贝数,让光学设计重新优化调整系统间隔和定位精度。
图4
全自动光学定心车工作原理的中心思想是让光学设计、光学加工和光机装校构成一个闭合反馈的研制链,合理分配指标和公差,使光学系统达到最佳的整体指标,同时降低整体研制成本。
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22