什么是机械定心法,机械定心法的原理、系数和精度分析
机械法定心是一种精密的工艺,能保证透镜在固定过程中的稳定性和精确性。在实际操作中,定心过程需要非常细致和耐心的调整。技术操作人员必须不断地监测透镜的位置,通过精密的测量仪器来确保力的平衡。从而透镜的稳定性和光学性能将得到显著提升,从而使得整个光学系统的性能达到设计要求。下面一起来看看具体的原理吧!
一、机械定心法原理
机械法定心是将透镜放在一对同轴精度高、端面精确垂直于轴线的接头之间,利用弹簧压力夹紧透镜,根据力的平衡来实现定心。一个接头可以转动,另一个既能转动又能沿轴向移动。当透镜光轴与机床主轴尚未重合时,如图所示,假设接头与透镜接触后,则接头施加给透镜压力N,方向垂直于透镜表面。压力N可分解为垂直于接头端面的夹紧力F和垂直于轴线的定心力P。定心力P将克服透镜与接头之间的摩擦力,使透镜沿垂直于轴线方向移动,夹紧力F将推动透镜沿轴线方向移动。当透镜光轴与机床主轴重合时,定心力就达到平衡,即完成定心。
二、机械定心法的系数
不是所有的透镜都能采用机械方法定心,因此,光学镜片在定心之前,可计算定心系数K值来判断加工的难易度,作为设计工艺与夹具的参考。
从上图可以看出,定心力的大小与接头和透镜之间的压力的大小和方向有关。压力的大小是由弹簧力决定的,而方向是由透镜的定心角(夹紧角)决定,定心角是指在接头轴线平面内,透镜与接头接触点的切线间的夹角α。设接头和透镜之间的定心角为αi,接头的直径为Di,透镜非黏结面的曲率半径为Ri,则定心角的正切值为
通过一系列计算可得机械法定心系数K为
假设摩擦系数μ=0.15,则上式计算得出的K≥0.15,说明定心角α=17°30′,则定心可行;若0.1<K<0.15,则相当于定心角为12°<α<17°30′,定心效果差;若K<0.1,相当于α<12°,则不能定心。
三、影响机械法定心精度的因素
1)机床主轴径向跳动
机床主轴径向跳动直接会造成透镜基准轴的位置变化,因此,机床使用前一定要校正主轴跳动,使其径向跳动小于定心精度。
2)接头
机械法定心的关键是定心接头的精度和质量,要防止接头表面划伤抛光表面,并能保证定心后的中心误差精度,因此,对接头提出如下要求:
(a)接头轴与机床回转轴的重合精度应高于定心精度。
(b)接头端面应与几何轴线精确垂直。
(c)接头端面应光滑,不能擦伤透镜抛光表面,表面粗糙度应达到*Ra*0.16。
(d)接头外径比透镜完工外径小0.15~0.30mm。
(e)接头材料通常选用黄铜或钢。
以上就是机械定心法的原理、系数和精度分析,如果您还有更多关于定心车的内容,请持续关注欧光科技。
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22