解读激光束的反射和吸收的原理
如果被加工表面反射过多的光能,则吸收的能量减少,工作效率降低,并且反射光可能对光学系统造成损害。因此激光束的反射和吸收与激光加工密切相关。
吸收和反射的值与以下关系相关:
反射率 =1- 吸收率(对于不透明材料)或
反射率 =1- 吸收率 - 透射率(对于透明材料)
光在介质中的传输
从空气到不透明的完美平坦干净金属表面的法线入射角的反射系数 R 可以使用以下公式计算:
R=[(1-n) 2 +k 2 ]/[(1+n) 2 +k 2 ]
不透明金属表面的吸收率A为:
A=1–R=4n/[(n+1) 2 +k 2 ]
其中n是材料的折射系数,k是材料的消光系数。这两个值都可以在手册中查找。我们在下表中列出了一些值。请记住,这些光学特性是辐射波长的函数,并随温度而变化。
接下来我们研究影响反射率和吸收率的因素。
波长:波长越短,光子的能量越高 。波长较短的光子比波长较长的光子更容易被材料吸收。因此,R 通常随着波长变短而减小,而当光子能量增加时吸收增加。
温度:随着温度升高,声子数量将会增加。电子更有可能与结构相互作用,而不是与入射光子相互作用。因此,随着温度的升高,反射率下降,吸收率增加。
入射角和偏振面:反射率随入射角和偏振面而变化。如果偏振面位于入射面,则该光线称为平行光线(“p”光线);如果偏振面垂直于入射面,则该射线称为“s”射线。“p”射线和“s”射线的完美平面的反射率系数为:
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]
其中f是入射角,n是折射系数,k是材料消光系数。我们看到这里p射线和s射线的反射率是不同的,p射线比s射线更容易被材料吸收。
例:利用表中的数据,求出Nd:YAG激光束辐射在Al表面上的s射线和p射线反射和吸收,入射角为60度。
解:对于铝,k=8.5,n=1.75,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(1.75-cos60)^2+8.5^2]/[(1.75+cos60)^2+8.5^2]=73.8125/77.3125=0.955=95.5%
s 射线吸收率 =1-Rs=4.5%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(1.75-1/cos60)^2+8.5^2]/[(1.75+1/cos60)^2+8.5^2]=72.3125/86.3125=83.8%
p 射线吸收 =1-Rp=16.2%
例:利用表中的数据,求 Nd:YAG 激光束辐射在 Fe 表面上的 s 射线和 p 射线反射和吸收,入射角为 60 度。
解:对于铁,k=4.44,n=3.81,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(4.44-cos60)^2+3.81^2]/[(4.44+cos60)^2+3.81^2]=77.18%
s 射线吸收率 =1-Rs=22.82%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(4.44-1/cos60)^2+3.81^2]/[(4.44+1/cos60)^2+3.81^2]=36.56%
p 射线吸收 =1-Rp=63.44%
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22