什么是光学折射系统?光学折射系统原理分析
光学折射系统是一种利用透镜或反射镜的折射和反射原理来操纵光线的光学装置。这类系统通过改变光线的传播方向和聚焦特性,实现对光束的控制和成像。伽利略望远镜作为一种典型的光学折射系统,其结构由一个正透镜(物镜)和一个负透镜(目镜)组成,能够实现对远处物体的放大观察。
伽利略望远镜的工作原理基于透镜的光焦度(φ),即透镜对光线的折射能力。系统的光学方程式可表示为:
φL1+φL2–φL1φL2D=0
其中φL1—透镜1(正透镜)的光焦度,φL2—透镜2(负透镜)的光焦度,D—镜片间隔。如果从负透镜射出的光线在工作温度范围内保持准直,其被认为是被动无热化的设计。在一些要求更高的应用中,可以指定在温度范围内放大倍率变化量作为条件进行进一步约束。
望远镜中透镜光学材料和镜筒的CTE和TCR如下表所示。在本例中,准直的近轴变化需要控制在18μrad以内(在衍射极限范围内,四分之一波长),–10°C和50°C下的像差曲线如下图。
本例选择的外壳材料是殷钢,与铝或其他金属相比,这种材料具有非常低的膨胀系数。正物镜为球面透镜,由硅制成,具有较小的膨胀系数和中等大的正折射热系数,随着温度的升高,镜头会变得更加正;负锗透镜具有较小的膨胀系数和较大的正折射热系数,随着温度的升高,负透镜变得更加负。因此,当两者按配合使用并安装在殷钢的镜筒中时,它们的尺寸和材料变化会相互抵消,从而使出射光束保持准直状态。此外,放大倍率的变化仅为0.3%左右。
通过选择与制造光学零件(反射镜)材料相同的镜筒材料,选择光学零件特性来补偿镜筒材料的热效应,以及选择镜筒材料来补偿光学零件的光学特性,可以实现光学设备的被动无热化。
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22