OptiCentric®IR红外中心偏差测量仪:红外光精准测量的不二之选
在红外光学领域,精准测量各镜片光轴相对参考轴的中心偏差至关重要。德国TRIOPTICSGmbH精心研发的OptiCentric®IR红外kaiyun爱如星火 ,无疑是此领域的卓越之选,堪称目前世界上测量红外光学系统中各表面相对偏心最有效的仪器。
这款测量仪拥有OptiCentric®100IR和OptiCentric®300IR两种型号,全面覆盖您的需求。无论是中波红外还是长波红外光学镜片或光学系统中心偏差测量,它都能轻松应对,为您提供精准可靠的数据。
在测量精度方面,它表现出色。在可见光领域,精度可达±0.2μm或2″;在中波红外和长波红外领域,精度也能保持在±2μm。其光源配置更是精心设计,高功率LED光源以及约4.05μm和9.2μm的QCL激光器,确保测量的稳定性和准确性。
OptiCentric®IR红外中心偏差测量仪还充分考虑了不同尺寸被测镜头的需求。OptiCentric®100IR型号能容纳最大直径225mm的被测镜头,最大负载20kg;OptiCentric®300IR型号则可应对最大直径500mm的被测镜头,最大负载高达300kg。并且,两者均采用高精度气浮转台,进一步提升测量的精度和稳定性。
选择OptiCentric®IR红外中心偏差测量仪,就是选择精准、选择可靠、选择领先。
-
半导体光刻物镜的精度对于芯片制造有哪些具体影响?
在当今科技高速发展的时代,芯片宛如现代社会的“工业粮食”,广泛应用于从智能手机、电脑到汽车、工业控制等诸多领域,深刻改变着人们的生活与生产方式。而在芯片制造这一复杂且精密的工艺链条中,半导体光刻物镜的精度扮演着举足轻重、堪称“命门”的关键角色,诸多环节与之紧密相连,牵一发而动全身。
2024-11-25
-
什么是微波光子学?微波光子学的应用和特点
在信息技术迅猛发展的今天,微波光子学作为一门融合微波工程和光子学的新兴交叉学科,正逐渐在通信技术领域崭露头角。它利用光子技术处理微波频率范围内的信号,为高频信号的生成、传输、处理和分析提供了创新的解决方案。本文将探讨微波光子学的关键应用、技术特点,并探讨它是否预示着通信技术的未来。
2024-11-25
-
光学前沿的新进展:矢量纯四次孤子分子光纤激光器研究新进展
在光学领域,孤子(soliton)是一种特殊的光脉冲,它在非线性介质中传播时能够保持其形状不变。近年来,随着非线性光学和光纤激光器技术的发展,孤子的研究已经从传统的二次孤子扩展到了更高阶的孤子,如纯四次孤子。本文将概述矢量纯四次孤子分子光纤激光器的最新研究进展,这一领域的发展为光学通信、光逻辑系统和高分辨率光学等领域带来了新的机遇。
2024-11-25
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22