创新生物打印技术:激光和光反应凝胶制造对齐微丝结构
苏黎世联邦理工学院刘浩领导的研究团队,通过激光和光反应凝胶技术,成功在实验室中生产出高度对齐的微丝结构,为培养结缔、神经和肌肉组织开辟了新的可能性。这一基于光学的方法为生物医学研究和转化医学构建栩栩如生的组织模型提供了新的途径。
实验室制造组织的挑战
在实验室中成功制造组织,关键在于复制生物组织中细胞的排列方式。这通常通过生产具有对齐微结构的3D生物相容性组织支架实现,该支架可作为培养组织的平台。
刘浩的研究历程
刘浩在大阪读研究生时首次接触实验室培养的组织,参与开发人造肉项目,从而了解到通过培养组织可以开发出相关的东西并有所作为。
丝状光3D生物打印机的创新
苏黎世联邦理工学院的丝状光3D生物打印机可用于生产排列整齐的组织结构。该团队采用了一种现有的生产组织支架的工艺,并将其与一种对光有反应的化学改性明胶一起使用,明胶在辐射前是液态的,但暴露在光线下会变硬。
光反应凝胶的发现
刘浩发现,水凝胶结构并不均匀,由极细的细丝组成。水凝胶支架中的微丝是由于凝胶暴露在光下的强度变化造成的。激光束发出的光线并不是在它照射到的任何地方都同样强度的;相反,其强度类似于点状图案。
微丝结构的应用
刘浩将细胞封装在水凝胶支架中,组织在凝胶细丝之间的通道中生长,创建了与身体中许多组织的自然结构相似的排列整齐的组织结构。
合作与原型打印机的开发
该团队与苏黎世艺术大学的工业设计专业学生合作,设计了一款紧凑型原型打印机,用于生产用于生长对齐组织的丝状水凝胶支架。利用新打印机和光激活凝胶,该团队已经生成了肌肉、肌腱、神经和软骨组织结构。
技术的应用前景
刘浩希望将该技术应用于广泛的领域,包括让其他科学家也能使用该技术和打印机,以便他们也能生产出这种对齐的组织并将其用于研究。此外,该技术还可用于开发不同的组织模型,如肌肉组织或肌腱,目的是创建用于高通量药物筛选和其他应用的人体组织模型。
刘浩的研究不仅推动了生物打印技术的发展,也为未来手术中使用的替代材料提供了可能性。这项组织生成技术已获得苏黎世联邦理工学院的专利,预示着未来在生物医学领域的广泛应用。
-
【光学前沿】阿尔托大学开创光涡旋新设计,推动光数据传输革命
在数据存储和传输需求日益增长的今天,寻找更高效的方法来编码和传输大量数据变得至关重要。阿尔托大学的最新研究成果为我们提供了一种创新的解决方案:通过在光纤中使用准晶体传输数据的光涡旋。这项突破性的设计方法不仅理论上可以创建任何类型的光涡旋,而且在实际应用中展示了极高的拓扑电荷,为光数据传输开辟了新的可能性
2024-11-22
-
半导体芯片全生命周期解析:制造、设计、测试与封装
半导体芯片,作为现代电子设备的核心,其制造过程复杂且精细,涉及众多专业术语和技术。本文旨在对半导体芯片的全生命周期进行详细解析,从制造、设计、测试到封装,为业内人士提供参考。
2024-11-22
-
激光束投射阴影:渥太华大学与布鲁克海文国家实验室的创新发现
近日,在光学领域的一项突破性研究中,渥太华大学和布鲁克海文国家实验室的研究人员展示了激光束在特定条件下能够像实体物体一样投射出可见阴影。这一发现不仅挑战了我们对光和阴影的传统认知,也为激光技术的应用开辟了新的可能性。
2024-11-21
-
【光学前沿】中山大学研究团队突破大气散射光学成像极限
光学成像技术在遥感、天文学、军事监控和环境监测等多个领域扮演着关键角色。然而,光线在通过大气散射介质时,会受到空气中颗粒物的干扰,导致图像对比度和清晰度大幅下降,影响远距离目标的观测和识别。因此,提高在恶劣天气条件下光学成像系统的性能,是光学成像领域亟待解决的挑战。
2024-11-21